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Neurobehavioural effects of developmental toxicity 
Philippe Grandjean, Philip J Landrigan

Neurodevelopmental disabilities, including autism, attention-deficit hyperactivity disorder, dyslexia, and other 
cognitive impairments, affect millions of children worldwide, and some diagnoses seem to be increasing in frequency. 
Industrial chemicals that injure the developing brain are among the known causes for this rise in prevalence. In 2006, 
we did a systematic review and identified five industrial chemicals as developmental neurotoxicants: lead, 
methylmercury, polychlorinated biphenyls, arsenic, and toluene. Since 2006, epidemiological studies have documented 
six additional developmental neurotoxicants—manganese, fluoride, chlorpyrifos, dichlorodiphenyltrichloroethane, 
tetrachloroethylene, and the polybrominated diphenyl ethers. We postulate that even more neurotoxicants remain 
undiscovered. To control the pandemic of developmental neurotoxicity, we propose a global prevention strategy. 
Untested chemicals should not be presumed to be safe to brain development, and chemicals in existing use and all 
new chemicals must therefore be tested for developmental neurotoxicity. To coordinate these efforts and to accelerate 
translation of science into prevention, we propose the urgent formation of a new international clearinghouse.

Introduction
Disorders of neurobehavioural development affect 10–15% 
of all births,1 and prevalence rates of autism spectrum 
disorder and attention-deficit hyperactivity disorder seem 
to be increasing worldwide.2 Subclinical decrements in 
brain function are even more common than these 
neurobehavioural developmental disorders. All these 
disabilities can have severe consequences3—they diminish 
quality of life, reduce academic achievement, and disturb 
behaviour, with profound consequences for the welfare 
and productivity of entire societies.4 

The root causes of the present global pandemic of 
neurodevelopmental disorders are only partly 
understood. Although genetic factors have a role,5 they 
cannot explain recent increases in reported prevalence, 
and none of the genes discovered so far seem to be 
responsible for more than a small proportion of cases.5 
Overall, genetic factors seem to account for no more than 
perhaps 30–40% of all cases of neurodevelopmental 
disorders. Thus, non-genetic, environmental exposures 
are involved in causation, in some cases probably by 
interacting with genetically inherited predispositions. 

Strong evidence exists that industrial chemicals widely 
disseminated in the environment are important 
contributors to what we have called the global, silent 
pandemic of neurodevelopmental toxicity.6,7 The 
developing human brain is uniquely vulnerable to toxic 
chemical exposures, and major windows of 
developmental vulnerability occur in utero and during 
infancy and early childhood.8 During these sensitive life 
stages, chemicals can cause permanent brain injury at 
low levels of exposure that would have little or no adverse 
effect in an adult. 

In 2006, we did a systematic review of the published 
clinical and epidemiological studies into the neurotoxicity 
of industrial chemicals, with a focus on developmental 
neurotoxicity.6 We identified five industrial chemicals 
that could be reliably classified as developmental 
neurotoxicants: lead, methylmercury, arsenic, poly
chlorinated biphenyls, and toluene. We also noted 201 
chemicals that had been reported to cause injury to the 

nervous system in adults, mostly in connection with 
occupational exposures, poisoning incidents, or suicide 
attempts. Additionally, more than 1000 chemicals have 
been reported to be neurotoxic in animals in laboratory 
studies. 

We noted that recognition of the risks of industrial 
chemicals to brain development has historically needed 
decades of research and scrutiny, as shown in the cases 
of lead and methylmercury.9,10 In most cases, discovery 
began with clinical diagnosis of poisoning in workers 
and episodes of high-dose exposure. More sophisticated 
epidemiological studies typically began only much later. 
Results from such studies documented developmental 
neurotoxicity at much lower exposure levels than had 
previously been thought to be safe. Thus, recognition of 
widespread subclinical toxicity often did not occur until 
decades after the initial evidence of neurotoxicity. A 
recurring theme was that early warnings of subclinical 
neurotoxicity were often ignored or even dismissed.11 
David P Rall, former Director of the US National Institute 
of Environmental Health Sciences, once noted that “if 
thalidomide had caused a ten-point loss of intelligence 
quotient (IQ) instead of obvious birth defects of the 
limbs, it would probably still be on the market”.12 Many 
industrial chemicals marketed at present probably cause 
IQ deficits of far fewer than ten points and have therefore 
eluded detection so far, but their combined effects could 
have enormous consequences. 

In our 2006 review,6 we expressed concern that 
additional developmental neurotoxicants might lurk 
undiscovered among the 201 chemicals then known to be 
neurotoxic to adult human beings and among the many 
thousands of pesticides, solvents, and other industrial 
chemicals in widespread use that had never been tested 
for neurodevelopmental toxicity. Since our previous 
review, new data have emerged about the vulnerability of 
the developing brain and the neurotoxicity of industrial 
chemicals. Particularly important new evidence derives 
from prospective epidemiological birth cohort studies. 

In this Review, we consider recent information about 
the developmental neurotoxicity of industrial chemicals 
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to update our previous report.6 Additionally, we propose 
strategies to counter this pandemic and to prevent the 
spread of neurological disease and disability in children 
worldwide. 

Unique vulnerability of the developing brain
The fetus is not well protected against industrial 
chemicals. The placenta does not block the passage of 
many environmental toxicants from the maternal to the 
fetal circulation,13 and more than 200 foreign chemicals 
have been detected in umbilical cord blood.14 Additionally, 
many environmental chemicals are transferred to the 
infant through human breastmilk.13 During fetal life and 
early infancy, the blood–brain barrier provides only partial 
protection against the entry of chemicals into the CNS.15 

Moreover, the developing human brain is exceptionally 
sensitive to injury caused by toxic chemicals,6 and several 
developmental processes have been shown to be highly 
vulnerable to chemical toxicity. For example, in-vitro 
studies suggest that neural stem cells are very sensitive to 
neurotoxic substances such as methylmercury.16 Some 
pesticides inhibit cholinesterase function in the 
developing brain,17 thereby affecting the crucial regulatory 
role of acetylcholine before synapse formation.18 Early-life 
epigenetic changes are also known to affect subsequent 
gene expression in the brain.19 In summary, industrial 
chemicals known or suspected to be neurotoxic to adults 
are also likely to present risks to the developing brain. 

Figure 1 shows the unique vulnerability of the brain 
during early life and indicates how developmental 
exposures to toxic chemicals are particularly likely to lead 
to functional deficits and disease later in life. 

New findings about known hazards
Recent research on well-documented neurotoxicants has 
generated important new insights into the neuro
developmental consequences of early exposures to these 
industrial chemicals. 

Joint analyses that gathered data for lead-associated IQ 
deficits from seven international studies20,21 support the 

conclusion that no safe level of exposure to lead exists.22 
Cognitive deficits in adults who had previously shown 
lead-associated developmental delays at school age 
suggest that the effects of lead neurotoxicity are probably 
permanent.23 Brain imaging of young adults who had 
raised lead concentrations in their blood during 
childhood showed exposure-related decreases in brain 
volume.24 Lead exposure in early childhood is associated 
with reduced school performance25 and with delinquent 
behaviour later in life.26,27 

Developmental neurotoxicity due to methylmercury 
occurs at much lower exposures than the concentrations 
that affect adult brain function.28 Deficits at 7 years of age 
that were linked to low-level prenatal exposures to 
methylmercury were still detectable at the age of 
14 years.29 Some common genetic polymorphisms seem 
to increase the vulnerability of the developing brain to 
methylmercury toxicity.30 Functional MRI scans of people 
exposed prenatally to excess amounts of methylmercury 
showed abnormally expanded activation of brain regions 
in response to sensory stimulation and motor tasks 
(figure 2).31 Because some adverse effects might be 
counterbalanced by essential fatty acids from seafood, 
statistical adjustment for maternal diet during pregnancy 
results in stronger methylmercury effects.32,33 

Prenatal and early postnatal exposures to inorganic 
arsenic from drinking water are associated with cognitive 
deficits that are apparent at school age.34,35 Infants who 
survived the Morinaga milk arsenic poisoning incident 
had highly raised risks of neurological disease during 
adult life.36 

The developmental neurotoxicity of polychlorinated 
biphenyls has been consolidated and strengthened by 
recent findings.37 Although little new information has 
been published about the developmental neurotoxicity of 
toluene, much has been learned about the developmental 
neurotoxicity of another common solvent, ethanol, 
through research on fetal alcohol exposure. Maternal 
consumption of alcohol during pregnancy, even in very 
small quantities, has been linked to a range of 
neurobehavioural adverse effects in offspring, including 
reduced IQ, impaired executive function and social 
judgment, delinquent behaviour, seizures, other 
neurological signs, and sensory problems.38 

Newly recognised developmental 
neurotoxicants
Prospective epidemiological birth cohort studies make it 
possible to measure maternal or fetal exposures in real 
time during pregnancy as these exposures actually occur, 
thus generating unbiased information about the degree 
and timing of prenatal exposures. Children in these 
prospective studies are followed longitudinally and 
assessed with age-appropriate tests to show delayed 
or deranged neurobehavioural development. These 
powerful epidemiological methods have enabled the 
discovery of additional developmental neurotoxicants. 

Figure 1: Effect of neurotoxicants during early brain development 
Exposures in early life to neurotoxic chemicals can cause a wide range of adverse 
effects on brain development and maturation that can manifest as functional 
impairments or disease at any point in the human lifespan, from early infancy to 
very old age.

Early-life exposures to neurotoxic chemicals

Development/programming

Functional maturation

Neurological disease and degenerative changes
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Cross-sectional data from Bangladesh show that 
exposure to manganese from drinking water is associated 
with reduced mathematics achievement scores in school 
children.39 A study in Quebec, Canada, showed a strong 
correlation between manganese concentrations in hair 
and hyperactivity.40 School-aged children living near 
manganese mining and processing facilities have shown 
associations between airborne manganese concentrations 
and diminished intellectual function41 and with impaired 
motor skills and reduced olfactory function.42 These 
results are supported by experimental findings in mice.43 

A meta-analysis of 27 cross-sectional studies of children 
exposed to fluoride in drinking water, mainly from China, 
suggests an average IQ decrement of about seven points 
in children exposed to raised fluoride concentrations.44 
Confounding from other substances seemed unlikely in 
most of these studies. Further characterisation of the 
dose–response association would be desirable. 

The occupational health literature45 suggests that 
solvents can act as neurotoxicants, but the identification of 
individual responsible compounds is hampered by the 
complexity of exposures. In a French cohort study of 
3000 children, investigators linked maternal occupational 
solvent exposure during pregnancy to deficits in 
behavioural assessment at 2 years of age.46 The data 
showed dose-related increased risks for hyperactivity and 
aggressive behaviour. One in every five mothers in this 
cohort reported solvent exposures in common jobs, such 
as nurse or other hospital employee, chemist, cleaner, 
hairdresser, and beautician. In Massachusetts, USA, 
follow-up of a well-defined population with prenatal and 
early childhood exposure to the solvent tetrachloroethylene 
(also called perchlorethylene) in drinking water showed a 
tendency towards deficient neurological function and 
increased risk of psychiatric diagnoses.47 

Acute pesticide poisoning occurs frequently in children 
worldwide, and subclinical pesticide toxicity is also 
widespread. Clinical data suggest that acute pesticide 
poisoning during childhood might lead to lasting 
neurobehavioural deficits.48,49 Highly toxic and bio
accumulative pesticides are now banned in high-income 
nations, but are still used in many low-income and middle-
income countries. In particular, the organochlorine 
compounds dichlorodiphenyltrichloroethane (DDT), its 
metabolite dichlorodiphenyldichloroethylene (DDE), and 
chlordecone (Kepone), tend to be highly persistent and 
remain widespread in the environment and in people’s 
bodies in high-use regions. Recent studies have shown 
inverse correlations between serum concentrations of 
DDT or DDE (which indicate accumulated exposures), and 
neurodevelopmental performance.50,51 

Organophosphate pesticides are eliminated from the 
human body much more rapidly than are organochlorines, 
and exposure assessment is therefore inherently less 
precise. Nonetheless, three prospective epidemiological 
birth cohort studies provide new evidence that prenatal 
exposure to organophosphate pesticides can cause 

developmental neurotoxicity. In these studies, prenatal 
organophosphate exposure was assessed by measurement 
of maternal urinary excretion of pesticide metabolites 
during pregnancy. Dose-related correlations were recorded 
between maternal exposures to chlorpyrifos or other 
organophosphates and small head circumference at 
birth—which is an indication of slowed brain growth in 
utero—and with neurobehavioural deficits that have 
persisted to at least 7 years of age.52–54 In a subgroup study, 
MRI of the brain showed that prenatal chlorpyrifos 
exposure was associated with structural abnormalities that 
included thinning of the cerebral cortex.55 

Herbicides and fungicides might also have neurotoxic 
potential.56 Propoxur,57 a carbamate pesticide, and 
permethrine,58 a member of the pyrethroid class of 
pesticides, have recently been linked to neurodevelop
mental deficits in children. 

The group of compounds known as polybrominated 
diphenyl ethers (PBDEs) are widely used as flame 
retardants and are structurally very similar to the 
polychlorinated biphenyls. Experimental evidence now 
suggests that the PBDEs might also be neurotoxic.59 
Epidemiological studies in Europe and the USA have 
shown neurodevelopmental deficits in children with 
increased prenatal exposures to these compounds.60–62 
Thus, the PBDEs should be regarded as hazards to 
human neurobehavioural development, although 
attribution of relative toxic potentials to individual 
PBDE congeners is not yet possible.

Other suspected developmental neurotoxicants 
A serious difficulty that complicates many epidemiological 
studies of neurodevelopmental toxicity in children is the 
problem of mixed exposures. Most populations are 
exposed to more than one neurotoxicant at a time, and yet 

Figure 2: Functional MRI scans show abnormal activation in the brain
Average activation during finger tapping with the left hand in three adolescents with increased prenatal 
methylmercury exposure (A) and three control adolescents (B). The control participants activate the premotor and 
motor cortices on the right, whereas participants exposed to methylmercury activate these areas bilaterally.31

A

B
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most studies have only a finite amount of power and 
precision in exposure assessment to discern the possible 
effects of even single neurotoxicants. A further problem 
in many epidemiological studies of non-persistent 
toxicants is that imprecise assessment of exposure tends 
to obscure associations that might actually be present.63 
Guidance from experimental neurotoxicity studies is 
therefore crucial. In the assessment of potential 
developmental neurotoxicants, we have used a strength of 
evidence approach similar to that used by the International 
Agency for Research on Cancer for assessing 
epidemiological and experimental studies. 

Phthalates and bisphenol A are added to many different 
types of plastics, cosmetics, and other consumer 
products. Since they are eliminated rapidly in urine, 
exposure assessment is complicated, and such 
imprecision might lead to underestimation of the true 
risk of neurotoxicity. The best-documented effects of 
early-life exposure to phthalates are the consequence of 
disruption of endocrine signalling.64 Thus, prenatal 
exposures to phthalates have been linked to both 
neurodevelopmental deficits and to behavioural ab
normalities characterised by shortened attention span 
and impaired social interactions.65 The neurobehavioural 
toxicity of these compounds seems to affect mainly boys 
and could therefore relate to endocrine disruption in the 
developing brain.66 In regard to bisphenol A, a prospective 
study showed that point estimates of exposure during 
gestation were linked to abnormalities in behaviour and 
executive function in children at 3 years of age.67 

Exposure to air pollution can cause neuro
developmental delays and disorders of behavioural 
functions.68,69 Of the individual components of air 
pollution, carbon monoxide is a well-documented 
neurotoxicant, and indoor exposure to this substance 
has now been linked to deficient neurobehavioural 
performance in children.70 Less clear is the reported 
contribution of nitrogen oxides to neurodevelopmental 
deficits,71 since these compounds often co-occur with 
carbon monoxide as part of complex emissions. Tobacco 
smoke is a complex mixture of hundreds of chemical 

compounds and is now a well-documented cause of 
developmental neurotoxicity.72 Infants exposed pre
natally to polycyclic aromatic hydrocarbons from traffic 
exhausts at 5 years of age showed greater cognitive 
impairment and lower IQ than those exposed to lower 
levels of these compounds.68 

Perfluorinated compounds, such as perfluorooctanoic 
acid and perfluorooctane sulphonate, are highly 
persistent in the environment and in the human body, 
and seem to be neurotoxic.73 Emerging epidemiological 
evidence suggests that these compounds might indeed 
impede neurobehavioural development.74

Developmental neurotoxicity and clinical 
neurology
Exposures in early life to developmental neurotoxicants 
are now being linked to specific clinical syndromes in 
children. For example, an increased risk of attention-
deficit hyperactivity disorder has been linked to prenatal 
exposures to manganese, organophosphates,75 and 
phthalates.76 Phthalates have also been linked to 
behaviours that resemble components of autism 
spectrum disorder.77 Prenatal exposure to automotive air 
pollution in California, USA, has been linked to an 
increased risk for autism spectrum disorder.78 

The persistent decrements in intelligence documented 
in children, adolescents, and young adults exposed in early 
life to neurotoxicants could presage the development of 
neurodegenerative disease later in life. Thus, accumulated 
exposure to lead is associated with cognitive decline in the 
elderly.79 Manganese exposure may lead to parkinsonism, 
and experimental studies have reported Parkinson’s 
disease as a result of developmental exposures to the 
insecticide rotenone, the herbicides paraquat and maneb, 
and the solvent trichloroethylene.80 Any environmental 
exposure that increases the risk of neurodegenerative 
disorders in later life (figure 1) requires urgent investigation 
as the world’s population continues to age.81

The expanding complement of neurotoxicants
In our 2006 review,6 we expressed concern that additional 
developmental neurotoxicants might lie undiscovered in 
the 201 chemicals that were then known to be neurotoxic 
to human adults, in the roughly 1000 chemicals known 
to be neurotoxic in animal species, and in the many 
thousands of industrial chemicals and pesticides that 
have never been tested for neurotoxicity. Exposure to 
neurotoxic chemicals is not rare, since almost half of the 
201 known human neurotoxicants are regarded as high 
production volume chemicals.

Our updated literature review shows that since 2006 the 
list of recognised human neurotoxicants has expanded by 
12 chemicals, from 202 (including ethanol) to 214 (table 1 
and appendix)—that is, by about two substances per year. 
Many of these chemicals are widely used and disseminated 
extensively in the global environment. Of the newly 
identified neurodevelopmental toxicants, pesticides 

Number 
known in 
2006

Number 
known in 
2013

Identified since 2006

Metals and inorganic 
compounds

25 26 Hydrogen phosphide82

Organic solvents 39* 40 Ethyl chloride83  

Pesticides 92 101 Acetamiprid,84 amitraz,85 avermectin,86 emamectin,87 
fipronil (Termidor),88 glyphosate,89 hexaconazole,90 

imidacloprid,91 tetramethylenedisulfotetramine92 

Other organic compounds 46 47 1,3-butadiene93

Total 202* 214 12 new substances

*Including ethanol.

Table 1: Industrial chemicals known to be toxic to the human nervous system in 2006 and 2013, 
according to chemical group

See Online for appendix
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constitute the largest group, as was already the case in 
2006. In the same 7-year period, the number of known 
developmental neurotoxicants has doubled from six to 12 
(table 2). Although the pace of scientific discovery of new 
neurodevelopmental hazards is more rapid today than in 
the past, it is still slower than the identification of adult 
neurotoxicants. 

The gap that exists between the number of substances 
known to be toxic to the adult brain and the smaller 
number known to be toxic to the much more vulnerable 
developing brain is unlikely to close in the near future. 
This discrepancy is attributable to the fact that toxicity to 
the adult brain is usually discovered as a result of acute 
poisoning incidents, typically with a clear and immediate 
association between causative exposure and adverse 
effects, as occurs for workplace exposures or suicide 
attempts. By contrast, the recognition of developmental 
neurotoxicity relies on two sets of evidence collected at two 
different points in time: exposure data (often obtained 
from the mother during pregnancy), and data for the 
child’s postnatal neurobehavioural development (often 
obtained 5–10 years later). Because brain functions develop 
sequentially, the full effects of early neurotoxic damage 
might not become apparent until school age or beyond. 
The most reliable evidence of developmental neurotoxicity 
is obtained through prospective studies that include real-
time recording of information about exposure in early life 
followed by serial clinical assessments of the child. Such 
research is inherently slow and is hampered by the 
difficulty of reliable assessment of exposures to individual 
toxicants in complex mixtures. 

Consequences of developmental neurotoxicity
Developmental neurotoxicity causes brain damage that is 
too often untreatable and frequently permanent. The 
consequence of such brain damage is impaired CNS 
function that lasts a lifetime and might result in reduced 
intelligence, as expressed in terms of lost IQ points, or 
disruption in behaviour. A recent study compared the 
estimated total IQ losses from major paediatric causes and 
showed that the magnitude of losses attributable to lead, 
pesticides, and other neurotoxicants was in the same range 
as, or even greater than, the losses associated with medical 
events such as preterm birth, traumatic brain injury, brain 
tumours, and congenital heart disease (table 3).94 

Loss of cognitive skills reduces children’s academic 
and economic attainments and has substantial long-term 
economic effects on societies.4 Thus, each loss of one IQ 
point has been estimated to decrease average lifetime 
earnings capacity by about €12 000 or US$18 000 in 2008 
currencies.96 The most recent estimates from the USA 
indicate that the annual costs of childhood lead poisoning 
are about US$50 billion and that the annual costs of 
methylmercury toxicity are roughly US$5 billion.97 In the 
European Union, methylmercury exposure is estimated 
to cause a loss of about 600 000 IQ points every year, 
corresponding to an annual economic loss of close to 

€10 billion. In France alone, lead exposure is associated 
with IQ losses that correspond to annual costs that might 
exceed €20 billion.98 Since IQ losses represent only one 
aspect of developmental neurotoxicity, the total costs are 
surely even higher. 

Evidence from worldwide sources indicates that 
average national IQ scores are associated with gross 
domestic product (GDP)—a correlation that might be 
causal in both directions.99 Thus, poverty can cause low 
IQ, but the opposite is also true. In view of the widespread 
exposures to lead, pesticides, and other neurotoxicants in 
developing countries, where chemical controls might be 
ineffective compared with those in more developed 
countries,100,101 developmental exposures to industrial 
chemicals could contribute substantially to the recorded 
correlation between IQ and GDP. If this theory is true, 
developing countries could take decades to emerge from 
poverty. Consequently, pollution abatement might then 
be delayed, and a vicious circle can result. 

The antisocial behaviour, criminal behaviour, violence, 
and substance abuse that seem to result from early-life 
exposures to some neurotoxic chemicals result in 
increased needs for special educational services, 
institutionalisation, and even incarceration. In the USA, 
the murder rate fell sharply 20 years after the removal of 

Known in 2006 Newly identified

Metals and inorganic compounds Arsenic and arsenic compounds, 
lead, and methylmercury

Fluoride and manganese

Organic solvents (Ethanol) toluene Tetrachloroethylene

Pesticides None Chlorpyrifos and DDT/DDE

Other organic compounds Polychlorinated biphenyls Brominated diphenyl ethers

Total 6* 6

DDT=dichlorodiphenyltrichloroethane. DDE=dichlorodiphenyldichloroethylene. *Including ethanol.

Table 2: Industrial chemicals known to cause developmental neurotoxicity in human beings in 2006 and 
2013, according to chemical group

Number of IQ points lost

Major medical and neurodevelopmental disorders

Preterm birth 34 031 025

Autism spectrum disorders 7 109 899

Paediatric bipolar disorder 8 164 080

Attention-deficit hyperactivity disorder 16 799 400

Postnatal traumatic brain injury 5 827 300

Environmental chemical exposures

Lead 22 947 450

Methylmercury 1 590 000*

Organophosphate pesticides 16 899 488

Other neurotoxicants Unknown

IQ=intelligence quotient. Data from from Bellinger.94  *From Grandjean and 
colleagues.95

Table 3: Total losses of IQ points in US children 0–5 years of age 
associated with major risk factors, including developmental exposure 
to industrial chemicals that cause neurotoxicity
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lead from petrol,102 a finding consistent with the idea that 
exposure to lead in early life is a powerful determinant of 
behaviour decades later. Although poorly quantified, 
such behavioural and social consequences of neuro
developmental toxicity are potentially very costly.76 

Prevention of developmental neurotoxicity caused by 
industrial chemicals is highly cost effective. A study that 
quantified the gains resulting from the phase-out of lead 
additives from petrol reported that in the USA alone, the 
introduction of lead-free petrol has generated an economic 
benefit of $200 billion in each annual birth cohort since 
1980,103 an aggregate benefit in the past 30 years of over 
$3 trillion. This success has since been repeated in more 
than 150 countries, resulting in vast additional savings. 
Every US$1 spent to reduce lead hazards is estimated to 
produce a benefit of US$17–220, which represents a cost-
benefit ratio that is even better than that for vaccines.4 
Furthermore, the costs associated with the late-life 
consequences of developmental neurotoxicity are 
enormous, and the benefits from prevention of 
degenerative brain disorders could be very substantial. 

New methods to identify developmental 
neurotoxicants
New toxicological methods now allow a rational strategy 
for the identification of developmental neurotoxicants 
based on a multidisciplinary approach.104 A new guideline 
has been approved as a standardised approach for the 
identification of developmental neurotoxicants.105 However, 
completion of such tests is expensive and requires the use 
of many laboratory animals, and reliance on mammals for 
chemicals testing purposes needs to be reduced.106 US 
governmental agencies have established the National 
Center for Computational Toxicology and an initiative—
the Tox 21 Program—to promote the evolution of toxicology 
from a mainly observational science to a predominantly 
predictive science.107

In-vitro methods have now reached a level of predictive 
validity that means they can be applied to neurotoxicity 

testing.108 Some of these tests are based on neural stem 
cells. Although these cell systems do not have a blood–
brain barrier and particular metabolising enzymes, these 
approaches are highly promising. As a further option, 
data for protein links and protein–protein interactions can 
now be used to explore potential neurotoxicity in silico,109 
thus showing that existing computational methods might 
predict potential toxic effects.110 

In summary, use of the whole range of approaches 
along with clinical and epidemiological evidence, when 
available, should enable the integration of information for 
use in at least a tentative risk assessment. With these 
methods, we anticipate that the pace of scientific discovery 
in developmental neurotoxicology will accelerate further 
in the years ahead. 

Conclusions and recommendations
The updated findings presented in this Review confirm 
and extend our 2006 conclusions.6 During the 7 years 
since our previous report, the number of industrial 
chemicals recognised to be developmental neurotoxicants 
has doubled. Exposures to these industrial chemicals in 
the environment contribute to the pandemic of 
developmental neurotoxicity.

Two major obstacles impede efforts to control the global 
pandemic of developmental neurotoxicity. These barriers, 
which we noted in our previous review6 and were recently 
underlined by the US National Research Council,111 are: 
large gaps in the testing of chemicals for developmental 
neurotoxicity, which results in a paucity of systematic data 
to guide prevention; and the huge amount of proof 
needed for regulation. Thus, very few chemicals have 
been regulated as a result of developmental neurotoxicity. 

The presumption that new chemicals and technologies 
are safe until proven otherwise is a fundamental problem.111 
Classic examples of new chemicals that were introduced 
because they conveyed certain benefits, but were later 
shown to cause great harm, include several neurotoxicants, 
asbestos, thalidomide, diethylstilboestrol, and the 
chlorofluorocarbons.112 A recurring theme in each of these 
cases was that commercial introduction and wide 
dissemination of the chemicals preceded any systematic Panel: Recommendations for an international clearinghouse on neurotoxicity

The main purpose of this agency would be to promote optimum brain health, not just 
avoidance of neurological disease, by inspiring, facilitating, and coordinating research and 
public policies that aim to protect brain development during the most sensitive life stages. 
The main efforts would aim to:
•	 Screen industrial chemicals present in human exposures for neurotoxic effects so that 

hazardous substances can be identified for tighter control
•	 Stimulate and coordinate new research to understand how toxic chemicals interfere 

with brain development and how best to prevent long-term dysfunctions and deficits
•	 Function as a clearinghouse for research data and strategies by gathering and assessing 

documentation about brain toxicity and stimulating international collaboration on 
research and prevention

•	 Promote policy development aimed at protecting vulnerable populations against 
chemicals that are toxic to the brain without needing unrealistic amounts of scientific 
proof

Search strategy and selection criteria

We identified studies published since 2006 on the neurotoxic 
effects of industrial chemicals in human beings by using the 
search terms “neurotoxicity syndromes”[MeSH], “neurotoxic”, 
“neurologic”, or “neuro*”, combined with “exposure” and 
“poisoning” in PubMed, from 2006 to the end of 2012. For 
developmental neurotoxicity, the search terms were “prenatal 
exposure delayed effects”[MeSH], “maternal exposure” or 
“maternal fetal exchange”, “developmental disabilities/
chemically induced” and “neurotoxins”, all of which were 
searched for with the limiters “All Child: 0–18 years, Human”. 
We also used references cited in the publications retrieved.
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effort to assess potential toxicity. Particularly absent were 
advance efforts to study possible effects on children’s health 
or the potential of exposures in early life to disrupt early 
development. Similar challenges have been confronted in 
other public health disasters, such as those caused by 
tobacco smoking, alcohol use, and refined foods. These 
problems have been recently termed industrial epidemics.113

To control the pandemic of developmental neurotoxicity, 
we propose a coordinated international strategy (panel). 
Mandatory and transparent assessment of evidence for 
neurotoxicity is the foundation of this strategy. 
Assessment of toxicity must be followed by governmental 
regulation and market intervention. Voluntary controls 
seem to be of little value.11 

The three pillars of our proposed strategy are: legally 
mandated testing of existing industrial chemicals and 
pesticides already in commerce, with prioritisation of 
those with the most widespread use, and incorporation 
of new assessment technologies; legally mandated 
premarket evaluation of new chemicals before they enter 
markets, with use of precautionary approaches for 
chemical testing that recognise the unique vulnerability 
of the developing brain; and the formation of a new 
clearinghouse for neurotoxicity as a parallel to the 
International Agency for Research on Cancer. This new 
agency will assess industrial chemicals for developmental 
neurotoxicity with a precautionary approach that 
emphasises prevention and does not require absolute 
proof of toxicity. It will facilitate and coordinate 
epidemiological and toxicological studies and will lead 
the urgently needed global programmes for prevention.

These new approaches must reverse the dangerous 
presumption that new chemicals and technologies are safe 
until proven otherwise. They must also overcome the 
existing requirement to produce absolute proof of toxicity 
before action can be started to protect children against 
neurotoxic substances. Precautionary interpretation of 
data about developmental neurotoxicity should take into 
account the very large individual and societal costs that 
result from failure to act on available documentation to 
prevent disease in children.114 Academic research has often 
favoured scepticism and required extensive replication 
before acceptance of a hypothesis,114 thereby adding to the 
inertia in toxicology and environmental health research 
and the consequent disregard of many other potential 
neurotoxicants.115 Additionally, the strength of evidence 
that is needed to constitute “proof” should be analysed in a 
societal perspective, so that the implications of ignoring a 
developmental neurotoxicant and of failing to act on the 
basis of available data are also taken into account. 

Finally, we emphasise that the total number of neurotoxic 
substances now recognised almost certainly represents an 
underestimate of the true number of developmental 
neurotoxicants that have been released into the global 
environment. Our very great concern is that children 
worldwide are being exposed to unrecognised toxic 
chemicals that are silently eroding intelligence, disrupting 

behaviours, truncating future achievements, and 
damaging societies, perhaps most seriously in developing 
countries. A new framework of action is needed.
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